
Advanced Shortest Paths:
Contraction Hierarchies

Michael Levin
Higher School of Economics

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Learning Objectives

Bidirectional Dijkstra can be 1000s of
times faster than Dijkstra for social
networks
But just 2x speedup for road networks
This lecture — great speedup for road
networks

Highway Hierarchies

Long-distance trips go through highways

Highway Hierarchies

Long-distance trips go through highways

Highway Hierarchies

Long-distance trips go through highways

Highway Hierarchies

Long-distance trips go through highways
To get from A to B , first merge into a
highway, then into a bigger highway,
etc., then exit to a highway, then exit to
a street, then go to B

Less important roads merge into more
important roads
Hierarchy of roads

Highway Hierarchies

Long-distance trips go through highways
To get from A to B , first merge into a
highway, then into a bigger highway,
etc., then exit to a highway, then exit to
a street, then go to B

Less important roads merge into more
important roads

Hierarchy of roads

Highway Hierarchies

Long-distance trips go through highways
To get from A to B , first merge into a
highway, then into a bigger highway,
etc., then exit to a highway, then exit to
a street, then go to B

Less important roads merge into more
important roads
Hierarchy of roads

Highway Hierarchies

There are algorithms based on this idea
“Highway Hierarchies” and “Transit
Node Routing” by Sanders and Schultes
Millions of times faster than Dijkstra
Pretty complex
This lecture — “Contraction Hierarchies”,
thousands of times faster than Dijkstra

Node Ordering

Nodes can be ordered by some
“importance”
Importance first increases, then
decreases back along any shortest path
E.g., points where a highway merges
into another highway
Can use bidirectional search

Importance Ideas
Many shortest paths involve important nodes

Importance Ideas
Important nodes are spread around

Importance Ideas
Important nodes are sometimes unavoidable

Shortest Paths with Preprocessing

Preprocess the graph
Find distance and shortest path in the
preprocessed graph
Reconstruct the shortest path in the
initial graph

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Preprocessing

Eliminate nodes one by one in some
order
Add shortcuts to preserve distances
Output: augmented graph + node order

Node Contraction

2 6 1 4 3 5
2 3 2 1 2

Node Contraction

2 6 4 3 5
2 1 2

1

3 2

5

Node Contraction

6 4 3 5
1 2

1

3 2

5

2

2

Node Contraction

6 4 5

1

3 2

5

2

2

3

1 2

3

Node Contraction

6 5

1

3

2

2

3

2

4

2

1

5 3

8

Node Contraction

1

3

2

2

3

4

2

1

5

5

6
8

3

2

Witness Paths
Contraction of node v

For every pair of edges (u, v), (v ,w)
add a new edge (u,w)
ℓ(u,w)← ℓ(u, v) + ℓ(v ,w)

But only if there is no witness path Puw

shorter than ℓ(u, v) + ℓ(v ,w) and
bypassing v

v

w1 w2

u1 u2

1 3
1 2

v

w1 w2

u1 u2

1 3
1 2

2
3

Witness Paths
Contraction of node v
For every pair of edges (u, v), (v ,w)
add a new edge (u,w)

ℓ(u,w)← ℓ(u, v) + ℓ(v ,w)

But only if there is no witness path Puw

shorter than ℓ(u, v) + ℓ(v ,w) and
bypassing v

w2

u2

3
2

v

u1

w1

1
1

v

w1 w2

u1 u2

1 3
1 2

2
3

Witness Paths
Contraction of node v
For every pair of edges (u, v), (v ,w)
add a new edge (u,w)
ℓ(u,w)← ℓ(u, v) + ℓ(v ,w)

But only if there is no witness path Puw

shorter than ℓ(u, v) + ℓ(v ,w) and
bypassing v

w2

u2

3
2

v

u1

w1

1
1

2

v

w1 w2

u1 u2

1 3
1 2

2
3

Witness Paths
Contraction of node v
For every pair of edges (u, v), (v ,w)
add a new edge (u,w)
ℓ(u,w)← ℓ(u, v) + ℓ(v ,w)

But only if there is no witness path Puw

shorter than ℓ(u, v) + ℓ(v ,w) and
bypassing v

w2

u2

v

w1 w2

u1 u2

1 3
1 2

2
3

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Witness Search
When contracting node v , for any pair of
edges (u, v) and (v ,w) we want to check
whether there is a witness path from u to w

bypassing v with length at most
ℓ(u, v) + ℓ(v ,w) — then there is no need to
add a shortcut from u to w .

Definition
Witness search is the search for a witness
path.

Definition
If there is an edge (u, v), call u a predecessor
of v . If there is an edge (v ,w), call w a
successor of v .

Witness Search

For each predecessor ui of v , run
Dijkstra from ui ignoring v

Essential for good query performance
Otherwise the augmented graph will be
very dense

v

w1 w2

u1

1
1 2

Witness Search Optimizations

Stop Dijkstra when distance from the
source becomes too big
Limit the number of hops

Stop Dijkstra

If d(ui , x) > max
u,w

(ℓ(u, v) + ℓ(v ,w)),

there is no witness path going through x

Limit the distance by
max
u,w

(ℓ(u, v) + ℓ(v ,w))

v

w1 w2

ui

x1
1 2

4

Stop Dijkstra

If d(ui , x) > max
u,w

(ℓ(u, v) + ℓ(v ,w)),

there is no witness path going through x

Limit the distance by
max
u,w

(ℓ(u, v) + ℓ(v ,w))

v

w1 w2

ui

x1
1 2

4

Stop Dijkstra

If d(ui , x) > max
u,w

(ℓ(u, v) + ℓ(v ,w)),

there is no witness path going through x

Limit the distance by
max
u,w

(ℓ(u, v) + ℓ(v ,w))

v

w1 w2

ui

x1
1 2

4

Stop Dijkstra

Consider any predecessor w ′ of any
successor w of v

If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path

v

w1 w2

ui

1
1 2

Stop Dijkstra

Consider any predecessor w ′ of any
successor w of v

If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path

v

w1 w2

ui

1
1 2

w ′
1

Stop Dijkstra

Consider any predecessor w ′ of any
successor w of v
If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path

v

w1 w2

ui

1
1 2

w ′
1

1

Stop Dijkstra

Consider any predecessor w ′ of any
successor w of v
If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path

v

w1 w2

ui

1
1 2

w ′
1

1

Stop Dijkstra

If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path

Limit the distance by
max
u,w

max
(w ′,w)

(ℓ(u, v) + ℓ(v ,w)− ℓ(w ′,w))

Stop Dijkstra

If
d(u,w ′) + ℓ(w ′,w) ≤ ℓ(u, v) + ℓ(v ,w),
there’s a witness path
Limit the distance by
max
u,w

max
(w ′,w)

(ℓ(u, v) + ℓ(v ,w)− ℓ(w ′,w))

Limit the Hops

Limit the number of “hops” in Dijkstra

Consider only shortest paths from source
with at most k edges
If witness path not found, add a shortcut
Tradeoff between preprocessing time
and augmented graph size
E.g., start with k = 1, increase
gradually to k = 5 in the end

Limit the Hops

Limit the number of “hops” in Dijkstra
Consider only shortest paths from source
with at most k edges

If witness path not found, add a shortcut
Tradeoff between preprocessing time
and augmented graph size
E.g., start with k = 1, increase
gradually to k = 5 in the end

Limit the Hops

Limit the number of “hops” in Dijkstra
Consider only shortest paths from source
with at most k edges
If witness path not found, add a shortcut

Tradeoff between preprocessing time
and augmented graph size
E.g., start with k = 1, increase
gradually to k = 5 in the end

Limit the Hops

Limit the number of “hops” in Dijkstra
Consider only shortest paths from source
with at most k edges
If witness path not found, add a shortcut
Tradeoff between preprocessing time
and augmented graph size

E.g., start with k = 1, increase
gradually to k = 5 in the end

Limit the Hops

Limit the number of “hops” in Dijkstra
Consider only shortest paths from source
with at most k edges
If witness path not found, add a shortcut
Tradeoff between preprocessing time
and augmented graph size
E.g., start with k = 1, increase
gradually to k = 5 in the end

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Bidirectional Dijkstra
Bidirectional Dijkstra using only upwards
edges

1

2

3

4

5

6

3

2

5

2

2

1

5
8

3

2

no
de

or
de
r

Bidirectional Dijkstra
Bidirectional Dijkstra using only upwards
edges

1

2

3

4

5

6

3

2

5

2

8

3

2

no
de

or
de
r

2

5

1

Bidirectional Dijkstra

Bidirectional Dijkstra using only upwards
edges
Don’t stop when some node was
processed both by forward and backward
searches
Stop Dijkstra when the extracted node
is already farther than the target

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

ComputeDistance(s, t, . . .)
estimate← +∞
Fill dist, distR with +∞ for each node
dist[s]← 0, distR [t]← 0
proc← empty, procR ← empty
while there are nodes to process:

v ← ExtractMin(dist)
if dist[v] ≤ estimate:

Process(v , . . .)
if v in procR and dist[v] + distR [v] < estimate:

estimate← dist[v] + distR [v]
vR ← ExtractMin(distR)
Repeat symmetrically for vR

return estimate

Conclusion

Preprocessing via nodes contraction

Query via Bidirectional Dijkstra
Are we done?
Why is algorithm for query correct?

Conclusion

Preprocessing via nodes contraction
Query via Bidirectional Dijkstra

Are we done?
Why is algorithm for query correct?

Conclusion

Preprocessing via nodes contraction
Query via Bidirectional Dijkstra
Are we done?

Why is algorithm for query correct?

Conclusion

Preprocessing via nodes contraction
Query via Bidirectional Dijkstra
Are we done?
Why is algorithm for query correct?

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Augmented Graph

Definition
The augmented graph G+ = (V ,E+) is the
graph on the same set of vertices V as the
initial graph G and an augmented set of
edges E+ that contains all the initial edges E
of the graph G along with the shortcuts
added at the preprocessing stage.

Distance Preservation

Lemma
The distance d+(s, t) between any two
nodes s and t in the augmented graph
G+ = (V ,E+) is equal to the distance
d(s, t) between these nodes in the initial
graph G = (V ,E).

Proof

Edges are only added to G , so
d+(s, t) ≤ d(s, t)

For any added shortcut (u,w), there
was a path u → v → w of length
ℓ(u, v) + ℓ(v ,w) = ℓ(u,w) before
adding this shortcut, so d+(s, t) can’t
be less than d(s, t)

Thus d+(s, t) = d(s, t)

Proof

Edges are only added to G , so
d+(s, t) ≤ d(s, t)

For any added shortcut (u,w), there
was a path u → v → w of length
ℓ(u, v) + ℓ(v ,w) = ℓ(u,w) before
adding this shortcut, so d+(s, t) can’t
be less than d(s, t)

Thus d+(s, t) = d(s, t)

Proof

Edges are only added to G , so
d+(s, t) ≤ d(s, t)

For any added shortcut (u,w), there
was a path u → v → w of length
ℓ(u, v) + ℓ(v ,w) = ℓ(u,w) before
adding this shortcut, so d+(s, t) can’t
be less than d(s, t)

Thus d+(s, t) = d(s, t)

Definition
The rank r(v) of vertex v is the position of v
in the node order returned by the
preprocessing stage.

Definition
A path P : v1 → v2 → . . .→ vk in the
augmented graph G+ is called increasing if
r(v1) < r(v2) < . . . < r(vk). Similarly, P is
called decreasing if
r(v1) > r(v2) > . . . > r(vk).

Justification of Bidirectional Search

Lemma
For any s and t, the augmented graph
G+ = (V ,E+) contains a shortest path Pst

such that the subpath Psv is increasing and
Pvt is decreasing.

Proof Idea

s = u0 uq = t

u1

up

no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk

uk+1no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk

uk+1no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk

uk+1no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk+1no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk+1

uk

no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk+1

uk

no
de

or
de
r

Proof Idea

s = u0 uq = t

u1

up

uk−1

uk+1no
de

or
de
r

Proof

Assume for the sake of contradiction
that no such path Pst exists

Then for any shortest path
P : s = u1 → u2 → . . .→ uk = t there
is a node ui , such that
r(ui−1) > r(ui) < r(ui+1) — call it a
local minimum

Proof

Assume for the sake of contradiction
that no such path Pst exists
Then for any shortest path
P : s = u1 → u2 → . . .→ uk = t there
is a node ui , such that
r(ui−1) > r(ui) < r(ui+1) — call it a
local minimum

Proof

For any shortest path P between s and
t, denote by m(P) the minimum rank of
a local minimum of this path

Consider the shortest path P* with the
maximum m(P), consider the local
minimum uk with
r(uk−1) > r(uk) = m(P) < r(uk+1)

Proof

For any shortest path P between s and
t, denote by m(P) the minimum rank of
a local minimum of this path
Consider the shortest path P* with the
maximum m(P), consider the local
minimum uk with
r(uk−1) > r(uk) = m(P) < r(uk+1)

Proof

If a shortcut (uk−1, uk+1) was added
when uk was contracted, there is a
shortest path P ′ with this shortcut
instead of uk−1 → uk → uk+1, and P ′

doesn’t contain uk , so
m(P ′) > m(P*) = r(uk) —
contradiction with the choice of P* with
the maximum m(P)

Proof

Otherwise, there was a witness path
from uk−1 to uk+1 comprised by nodes
with rank higher than r(uk) (they were
contracted after uk) — there is a
shortest path P ′′ with this path instead
of uk−1 → uk → uk+1, and
m(P ′′) > m(P*) — contradiction

Conclusion

Preprocessing via node contraction

Query via Bidirectional Dijkstra in the
augmented graph
Query correctness is proven
Are we done?
How to select the node order?

Conclusion

Preprocessing via node contraction
Query via Bidirectional Dijkstra in the
augmented graph

Query correctness is proven
Are we done?
How to select the node order?

Conclusion

Preprocessing via node contraction
Query via Bidirectional Dijkstra in the
augmented graph
Query correctness is proven

Are we done?
How to select the node order?

Conclusion

Preprocessing via node contraction
Query via Bidirectional Dijkstra in the
augmented graph
Query correctness is proven
Are we done?

How to select the node order?

Conclusion

Preprocessing via node contraction
Query via Bidirectional Dijkstra in the
augmented graph
Query correctness is proven
Are we done?
How to select the node order?

Outline

1 Contraction Hierarchies

2 Preprocessing

3 Witness Search

4 Query

5 Query Correctness

6 Node Ordering

Optimal Node Ordering
So far our algorithm works for any node
ordering

However, preprocessing and query time
depend heavily on it
Minimize the number of added shortcuts
Spread the important nodes across the
graph
Minimize the number of edges in the
shortest paths in the augmented graph

Optimal Node Ordering
So far our algorithm works for any node
ordering
However, preprocessing and query time
depend heavily on it

Minimize the number of added shortcuts
Spread the important nodes across the
graph
Minimize the number of edges in the
shortest paths in the augmented graph

Optimal Node Ordering
So far our algorithm works for any node
ordering
However, preprocessing and query time
depend heavily on it
Minimize the number of added shortcuts

Spread the important nodes across the
graph
Minimize the number of edges in the
shortest paths in the augmented graph

Optimal Node Ordering
So far our algorithm works for any node
ordering
However, preprocessing and query time
depend heavily on it
Minimize the number of added shortcuts
Spread the important nodes across the
graph

Minimize the number of edges in the
shortest paths in the augmented graph

Optimal Node Ordering
So far our algorithm works for any node
ordering
However, preprocessing and query time
depend heavily on it
Minimize the number of added shortcuts
Spread the important nodes across the
graph
Minimize the number of edges in the
shortest paths in the augmented graph

Order by Importance

Introduce a measure of importance

Contract the least important node
Importance can change after that

Order by Importance

Introduce a measure of importance
Contract the least important node

Importance can change after that

Order by Importance

Introduce a measure of importance
Contract the least important node
Importance can change after that

Algorithm
Keep all nodes in a priority queue by
decreasing importance

On each iteration, extract the least
important node
Recompute its importance
If it’s still minimal (compare with the
top of the priority queue), contract the
node
Otherwise, put it back into priority
queue with new priority

Algorithm
Keep all nodes in a priority queue by
decreasing importance
On each iteration, extract the least
important node

Recompute its importance
If it’s still minimal (compare with the
top of the priority queue), contract the
node
Otherwise, put it back into priority
queue with new priority

Algorithm
Keep all nodes in a priority queue by
decreasing importance
On each iteration, extract the least
important node
Recompute its importance

If it’s still minimal (compare with the
top of the priority queue), contract the
node
Otherwise, put it back into priority
queue with new priority

Algorithm
Keep all nodes in a priority queue by
decreasing importance
On each iteration, extract the least
important node
Recompute its importance
If it’s still minimal (compare with the
top of the priority queue), contract the
node

Otherwise, put it back into priority
queue with new priority

Algorithm
Keep all nodes in a priority queue by
decreasing importance
On each iteration, extract the least
important node
Recompute its importance
If it’s still minimal (compare with the
top of the priority queue), contract the
node
Otherwise, put it back into priority
queue with new priority

Eventual Stopping

If we don’t contract a node, we update
its importance
After at most |V | attempts all nodes
have updated importance
The node with the minimum updated
importance will be contracted after that

Importance criteria

Edge difference
Number of contracted neighbors
Shortcut cover
Node level

Edge Difference
Want to minimize the number of edges
in the augmented graph
Number of added shortcuts s(v),
incoming degree in(v), outgoing degree
out(v)

Edge difference
ed(v) = s(v)− in(v)− out(v)

Number of edges increases by ed(v)

after contracting v

Contract node with small ed(v)

Contracted Neighbors

Want to spread contracted nodes across
the graph
Contract a node with small number of
already contracted neighbors cn(v)

Shortcut Cover

Want to contract important nodes late
Shortcut cover sc(v) — the number of
neighbors w of v such that we have to
shortcut to or from w after contracting
v

If shortcut cover is big, many nodes
“depend” on v

Contract a node with small sc(v)

Node Level

Node level L(v) is an upper bound on
the number of edges in the shortest path
from any s to v in the augmented graph
Initially, L(v)← 0
After contracting node v , for neighbors
u of v do L(u)← max(L(u), L(v) + 1)
Contract a node with small L(v)

Importance
Use importance
I (v) = ed(v) + cn(v) + sc(v) + L(v)

You can play with weights of those 4
quantities in I (v) and see how
preprocessing time and query time
change
Each of the 4 quantities is necessary for
fast preprocessing/queries
Find a way to compute them efficiently
at any stage of the preprocessing

Comparison with Dijkstra

On a graph of Europe with 18M nodes,
on random pairs of vertices Dijkstra
works for 4.365s on average
On the same graph and same random
pairs, with the best set of heuristics
Contraction Hierarchies work for 0.18ms
on average — almost 25000 times faster!

Conclusion
Preprocess by contracting nodes ordered
approximately by importance
Query by Bidirectional Dijkstra on the
augmented graph
Importance function is heuristic, but
works well on road network graphs
1000s of times faster than Dijkstra
Compete on the forums whose solution
is the fastest!

	Contraction Hierarchies
	Preprocessing
	Witness Search
	Query
	Query Correctness
	Node Ordering

