Advanced Shortest Paths:
Bidirectional Dijkstra

Michael Levin

Higher School of Economics

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

@ Bidirectional Search

Shortest Path

Input: A graph G with non-negative edge
weights, a source vertex s and a
target vertex t.

Output: The shortest path between s and t
in G.

Why not just Dijkstra?

m O((|E| + |V])log |V]) is pretty fast,
right?

Why not just Dijkstra?

m O((|E| + |V])log |V]) is pretty fast,
right?

m For a graph of USA with 20M vertices
and 50M edges it will work for several
seconds on average

Why not just Dijkstra?

m O((|E| + |V])log |V]) is pretty fast,
right?

m For a graph of USA with 20M vertices
and 50M edges it will work for several
seconds on average

m Millions of users of Google Maps want
the result in a blink of an eye, all at the
same time

Why not just Dijkstra?

O((|E| + |V|) log | V]) is pretty fast,
right?

For a graph of USA with 20M vertices
and 50M edges it will work for several
seconds on average

Millions of users of Google Maps want
the result in a blink of an eye, all at the
same time

Need something significantly faster

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Fava
N

Dijkstra Progression

FA¥AY
!’A‘!

Dijkstra Progression

FAA
!’A‘!

Dijkstra Progression

BRL,
!’A‘!

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

Dijkstra Progression

|dea: Growing Circle

Lemma

When a vertex u is selected via ExtractMin,

dist[u] = d(s, u).

m When a vertex is extracted from the
priority queue for processing, all the
vertices at smaller distances have
already been processed

|dea: Growing Circle

Lemma

When a vertex u is selected via ExtractMin,

dist[u] = d(s, u).

m When a vertex is extracted from the
priority queue for processing, all the
vertices at smaller distances have
already been processed

m A “circle” of processed vertices grows

|dea: Growing Circle

|dea: Growing Circle

|dea: Growing Circle

@ e

|dea: Growing Circle

|dea: Growing Circle

|dea: Bidirectional Search

|dea: Bidirectional Search

|dea: Bidirectional Search

|dea: Bidirectional Search

O

|dea: Bidirectional Search

|dea: Bidirectional Search

1 ~1 ~ 3 1 1k
O—0O—0—® O—0O—©

|dea: Bidirectional Search

S t
1 1 3 3 1 1
O—(O—QQ—C)——(—0)

|dea: Bidirectional Search

S t
1 1 3 3 1 1
O—(O—Q—G)—(6)—(9)—10

|dea: Bidirectional Search

|dea: Bidirectional Search

@t

|dea: Bidirectional Search

Ol

|dea: Bidirectional Search

|dea: Bidirectional Search

)

|dea: Bidirectional Search
area((;) = 4rr?

2. area(() = 2mr?

Road networks

1.6M vertices, 3.8M arcs, travel time metric.

Picture by Andrew Goldberg.

Road networks

Searched area

Picture by Andrew Goldberg.

Road networks

forward search/ reverse search

Picture by Andrew Goldberg.

Road networks

Picture by Andrew Goldberg.

m Roughly 2x speedup

m Roughly 2x speedup
m Good, but not great

m Roughly 2x speedup
m Good, but not great

m [his is true for road networks

m Roughly 2x speedup
m Good, but not great
m This is true for road networks

m Let's look at social networks

Six Handshakes

m In 1929, Hungarian mathematician
Frigyes Karinthy made a “"Small World"
conjecture

Six Handshakes

m In 1929, Hungarian mathematician
Frigyes Karinthy made a “"Small World"
conjecture

m Can pass a message from any person to
any person in at most 6 handshakes

Six Handshakes

m In 1929, Hungarian mathematician
Frigyes Karinthy made a “"Small World"
conjecture

m Can pass a message from any person to
any person in at most 6 handshakes

m This is close to truth according to
experiments and is called a “six
handshakes” or “six degrees of
separation’ idea

Facebook

m Suppose an average person has around
100 Facebook friends

Facebook

m Suppose an average person has around
100 Facebook friends

m T hen 10000 friends of friends

Facebook

m Suppose an average person has around
100 Facebook friends

m Then 10000 friends of friends
m 1000000 friends of friends of friends

Facebook

m Suppose an average person has around
100 Facebook friends

m Then 10000 friends of friends
m 1000000 friends of friends of friends

Facebook

m Suppose an average person has around
100 Facebook friends

m Then 10000 friends of friends

m 1000000 friends of friends of friends
m

m

1 trillion people at six handshakes

Facebook

m Suppose an average person has around
100 Facebook friends

Then 10000 friends of friends
1000000 friends of friends of friends

1 trillion people at six handshakes

Not possible, as there are only about 7
billion people on earth

Facebook

m Find the shortest path from Michael to
Bob via friends connections

Facebook

m Find the shortest path from Michael to
Bob via friends connections

m For the two “farthest” people, Dijkstra
has to look through 2 billion people

Facebook

m Find the shortest path from Michael to
Bob via friends connections

m For the two “farthest” people, Dijkstra
has to look through 2 billion people
m |f we only consider friends of friends of

friends for both Michael and Bob, we
will find a connection

Facebook

m Find the shortest path from Michael to
Bob via friends connections

m For the two “farthest” people, Dijkstra
has to look through 2 billion people

m |f we only consider friends of friends of
friends for both Michael and Bob, we
will find a connection

m Roughly 1M friends of friends of friends

Facebook

m Find the shortest path from Michael to
Bob via friends connections

m For the two “farthest” people, Dijkstra
has to look through 2 billion people

m |f we only consider friends of friends of
friends for both Michael and Bob, we
will find a connection

m Roughly 1M friends of friends of friends

m 1M+ 1M = 2M people — 1000 times
less

Meet-in-the-middle

m More general idea, not just for graphs

Meet-in-the-middle

m More general idea, not just for graphs

m Instead of searching for all possible
objects, search for first halves and for
second halves separately

Meet-in-the-middle

m More general idea, not just for graphs

m Instead of searching for all possible
objects, search for first halves and for
second halves separately

m Then find “compatible” halves

Meet-in-the-middle

m More general idea, not just for graphs

m Instead of searching for all possible
objects, search for first halves and for
second halves separately

m Then find “compatible” halves

m Typically roughly O(v/N) instead of
O(N), including the previous Facebook
example

Conclusion

Dijkstra goes in “circles”

Bidirectional search idea can reduce the
search space

Roughly 2x speedup for road networks
Meet-in-the-middle — v/N instead of N
1000 times faster for social networks

Next video — Bidirectional Dijkstra
algorithm

Outline

@® Bidirectional Dijkstra

Dijkstra Reminder

m To find the shortest path from s to t

Dijkstra Reminder

m To find the shortest path from s to t

m Initialize dist[s] to 0, all other
distances to 0o

Dijkstra Reminder

m To find the shortest path from s to t

m Initialize dist[s] to 0, all other
distances to 0o

m ExtractMin — choose unprocessed u
with the smallest dist[u]

Dijkstra Reminder

m To find the shortest path from s to t

m Initialize dist[s] to 0, all other
distances to oo

m ExtractMin — choose unprocessed u
with the smallest dist[u]

m Process u — Relax the edges outgoing

from u

Dijkstra Reminder

m To find the shortest path from s to t

m Initialize dist[s] to 0, all other
distances to 0o

m ExtractMin — choose unprocessed u
with the smallest dist[u]

m Process u — Relax the edges outgoing
from u

m Repeat until t is processed

Reversed Graph

Definition

Reversed graph GR for a graph G is the
graph with the same set of vertices V and
the set of reversed edges E®, such that for
any edge (u, v) € E there is an edge
(v,u) € ER and vice versa.

b b
a c a c

G GF

Bidirectional Dijkstra

m Build GF

Bidirectional Dijkstra

m Build GF

m Start Dijkstra from s in G and from t in
GR

Bidirectional Dijkstra

m Build GR

m Start Dijkstra from s in G and from t in
GR

m Alternate between Dijkstra steps in G
and in GF

Bidirectional Dijkstra

m Build GR

m Start Dijkstra from s in G and from t in
GR

m Alternate between Dijkstra steps in G
and in GF

m Stop when some vertex v is processed

both in G and in G~

Bidirectional Dijkstra

m Build GR

m Start Dijkstra from s in G and from t in
GR

m Alternate between Dijkstra steps in G
and in GF

m Stop when some vertex v is processed
both in G and in GR

m Compute the shortest path between s
and t

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that
there is a shortest path from s to t going

through v?

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

S t

© ©

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that
there is a shortest path from s to t going

through v?

®

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

S t

0=0 00

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

OO0 OLDL@

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

@_1)31333 :1:1@

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

OO oSN ENEGENG

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that
there is a shortest path from s to t going

through v?

S t
1 ~1,~ 3 3 1,1
(O—O)—=—O—®—09)—0

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that
there is a shortest path from s to t going

through v?

S t
1 ~1,~ 3 3 1,1
(O—O)—=QD—O—®—09)—QW

4

Computing Distance

Let v be the first vertex which is processed
both in G and in GR. Does it follow that

there is a shortest path from s to t going

through v?

L0000 0 ®

4

Computing Distance

Lemma

Let dist[u]| be the distance estimate in the
forward Dijkstra from s in G and dist"[u]
— the same in the backward Dijkstra from t
in GR. After some node v is processed both
in G and GF, some shortest path from s to t
passes through some node u which is
processed either in G, in GF, or both, and
d(s, t) = dist[u] + dist"[u].

d(s,t) = dist[u] + /(u, w) + distR[w]

d(s,t) = distfu] + /(u, w) + distF[w] =

= dist[u] + distR[u]

— distlu] + dist"[u]
w

BidirectionalDijkstra(G,s, t)

GR < ReverseGraph(G)
Fill dist,dist® with +oo for each node
dist[s] « 0,distR[t] + 0
Fill prev,prev® with None for each node
proc < empty, procRé— empty
do:
v < ExtractMin(dist)
Process(v, G, dist, prev, proc)
if v in procR:
return ShortestPath(s,dist,prev,proc,t,...)
vR < ExtractMin(distF)
repeat symmetrically for v
while True

R as for v

Relax(u, v,dist, prev)

if dist[v] > dist[u] + w(u, v):
dist[v] < dist[u] + w(u, v)
prev|v] < u

Process(u, G,dist, prev, proc)

for (u,v) € E(G):
Relax(u, v,dist, prev)
proc.Append(u)

ShortestPath(s,dist, prev, proc, t,distR, prevf, prock)

distance < +00, Upes: < None
for v in proc—l—procR:
if dist[u] + distR[u] < distance:
Upest <— U
distance < dist[u] + distR[u]
path < empty
last < Upest
while last # s:
path.Append(/ast)
last < prev]|/ast]
path < Reverse(path)
last < Upest
while last # t:
last < prevR|last]
path.Append(/ast)
return (distance, path)

Conclusion

m Worst-case running time of Bidirectional
Dijkstra is the same as for Dijkstra

m Speedup in practice depends on the
graph

m Memory consumption is 2x to store G
and GF

m You'll see the speedup on social network
graph in the Programming Assignment

	Bidirectional Search
	Bidirectional Dijkstra

