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Fastest Route

What is the fastest route to get home from

work?
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Intuition

Assume that we stay at S and observe

two outgoing edges:
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Can we be sure that the distance from S

to C is 5?
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No, because the weight of the edge

(B ,C ) might be equal to, say, 1.
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Intuition

Can we be sure that the distance from S

to B is 3?
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weight edges.
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Optimal substructure

Observation

Any subpath of an optimal path is also

optimal.



Proof

Consider an optimal path from S to t and

two vertices u and v on this path. If there

were a shorter path from u to v we would

get a shorter path from S to t.

S u v t



Corollary

If S → . . .→ u → t is a shortest path from

S to t, then

d(S , t) = d(S , u) + w(u, t)



Edge relaxation

dist[v ] will be an upper bound on the

actual distance from S to v .

The edge relaxation procedure for an

edge (u, v) just checks whether going

from S to v through u improves the

current value of dist[v ].
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Relax((u, v) ∈ E )

if dist[v ] > dist[u] + w(u, v):

dist[v ]← dist[u] + w(u, v)

prev [v ]← u



Naive approach

Naive(G , S)

for all u ∈ V :

dist[u]←∞
prev [u]← nil

dist[S ]← 0

do:

relax all the edges

while at least one dist changes



Correct distances

Lemma

After the call to Naive algorithm all the

distances are set correctly.



Proof

Assume, for the sake of contradiction,

that no edge can be relaxed and there is

a vertex v such that dist[v ] > d(S , v).

Consider a shortest path from S to v

and let u be the �rst vertex on this path

with the same property. Let p be the

vertex right before u.

S p u v



Proof

Assume, for the sake of contradiction,

that no edge can be relaxed and there is

a vertex v such that dist[v ] > d(S , v).

Consider a shortest path from S to v

and let u be the �rst vertex on this path

with the same property. Let p be the

vertex right before u.
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Proof (continued)

S p u v

Then d(S , p) = dist[p] and hence

d(S , u) = d(S , p) + w(p, u) =

dist[p] + w(p, u)

dist[u] > d(S , u) = dist[p] + w(p, u)⇒
edge (p, u) can be relaxed �

a contradiction.
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Main ideas of Dijkstra’s Algorithm

We maintain a set R of vertices for

which dist is already set correctly

(�known region�).

The �rst vertex added to R is S .

On each iteration we take a vertex

outside of R with the minimal

dist-value, add it to R , and relax all its

outgoing edges.
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Pseudocode
Dijkstra(G , S)

for all u ∈ V :

dist[u]←∞, prev[u]← nil

dist[S ]← 0

H ← MakeQueue(V ) {dist-values as keys}

while H is not empty:

u ← ExtractMin(H)
for all (u, v) ∈ E:
if dist[v ] > dist[u] + w(u, v):

dist[v ]← dist[u] + w(u, v)
prev [v ]← u
ChangePriority(H , v , dist[v ])



Correct distances

Lemma

When a node u is selected via ExtractMin,

dist[u] = d(S , u).



Proof
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Running time
Total running time:

T (MakeQueue) + |V | · T (ExtractMin)

+ |E | · T (ChangePriority)

Priority queue implementations:

array:

O(|V | + |V |2 + |E |) = O(|V |2)
binary heap:

O(|V | + |V | log |V | + |E | log |V |) =
O((|V | + |E |) log |V |)
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Total running time:
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Conclusion

Can �nd the minimum time to get from

work to home

Can �nd the fastest route from work to

home

Works for any graph with non-negative

edge weights

Works in O(|V |2) or
O((|V | + |E |) log(|V |)) depending on

the implementation
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